Microsatellite accumulation on the Y chromosome in Silene latifolia.

نویسندگان

  • Zdenek Kubat
  • Roman Hobza
  • Boris Vyskot
  • Eduard Kejnovsky
چکیده

The dioecious plant Silene latifolia possesses evolutionarily young sex chromosomes, and so serves as a model system to study the early stages of sex chromosome evolution. Sex chromosomes often differ distinctly from autosomes in both their structure and their patterns of evolution. The S. latifolia Y chromosome is particularly unique owing to its large size, which contrasts with the size of smaller, degenerate mammalian Y chromosomes. It is thought that the suppression of recombination on the S. latifolia Y chromosome could have resulted in the accumulation of repetitive sequences that account for its large size. Here we used fluorescence in situ hybridization (FISH) to study the chromosomal distribution of various microsatellites in S. latifolia including all possible mono-, di-, and tri-nucleotides. Our results demonstrate that a majority of microsatellites are accumulated on the q arm of the Y chromosome, which stopped recombining relatively recently and has had less time to accumulate repetitive DNA sequences compared with the p arm. Based on these results we can speculate that microsatellites have accumulated in regions that predate the genome expansion, supporting the view that the accumulation of repetitive DNA sequences occurred prior to, not because of, the degeneration of genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for Degeneration of the Y Chromosome in the Dioecious Plant Silene latifolia

The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements ...

متن کامل

Recent spread of a retrotransposon in the Silene latifolia genome, apart from the Y chromosome.

Transposable elements often accumulate in nonrecombining regions, such as Y chromosomes. Contrary to this trend, a new Silene retrotransposon described here, has spread recently all over the genome of plant Silene latifolia, except its Y chromosome. This coincided with the latest steps of sex chromosome evolution in this species.

متن کامل

Comparison of the X and Y chromosome organization in Silene latifolia.

Here we compare gene orders on the Silene latifolia sex chromosomes. On the basis of the deletion mapping results (11 markers and 23 independent Y chromosome deletion lines used), we conclude that a part of the Y chromosome (covering a region corresponding to at least 23.9 cM on the X chromosome) has been inverted. The gradient in silent-site divergence suggests that this inversion took place a...

متن کامل

Genetic and functional analysis of DD44, a sex-linked gene from the dioecious plant Silene latifolia, provides clues to early events in sex chromosome evolution.

Silene latifolia is a dioecious plant with heteromorphic sex chromosomes. The sex chromosomes of S. latifolia provide an opportunity to study the early events in sex chromosome evolution because of their relatively recent emergence. In this article, we present the genetic and physical mapping, expression analysis, and molecular evolutionary analysis of a sex-linked gene from S. latifolia, DD44 ...

متن کامل

Nucleotide diversity in Silene latifolia autosomal and sex-linked genes.

The plant Silene latifolia has separate sexes and sex chromosomes, and is of interest for studying the early stages of sex chromosome evolution, especially the evolution of non-recombining regions on the Y chromosome. Hitch-hiking processes associated with ongoing genetic degeneration of the non-recombining Y chromosome are predicted to reduce Y-linked genes' effective population sizes, and S. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome

دوره 51 5  شماره 

صفحات  -

تاریخ انتشار 2008